

Schwimmerschalter für den senkrechten Einbau

Typ 719.0021

BEDIENUNGSANLEITUNG

Float Switch for top mounting

Type 719.0021

INSTRUCTION MANUAL

Inhaltsverzeichnis

	Seite
1. ANWENDUNGSBEREICH	4
1.1 Bestimmungsgemäßer Gebrauch	4
1.2 Einbauvorschläge	4
1.3 CE-Kennzeichnung	5
1.4 Qualität	5
2. AUFBAU DER GERÄTE	5
2.1 Maße	5
2.2 Anordnung Kontakte	6
3. INBETRIEBNAHME	6
3.1 Mechanische Montage	6
3.2 Elektrischer Anschluss 3.2.1 Anschlussbild	7 7
4. WARTUNG	7
5. GARANTIE	8
6. ENTSORGUNG	8
7. INSTANDSETZUNG	8
8. STÖRUNGSBEISTAND	8
9. TECHNISCHE DATEN	8
9.1 Mechanische Daten	8
9.2 Elektrische Daten	9
3 Besondere Bedingunge	9
10. NUMMERNSCHLÜSSEL	9
11. ERSATZTEILE	10
11.1 Schwimmer	10
11.2 Stellring	10

1. ANWENDUNGSBEREICH

Der Schwimmerschalter Magnodul 719.0021 dient zum Erfassen von Füllstandgrenzwerten von Flüssigkeiten und ist für den senkrechten Einbau von oben in den Tank konzipiert. Er kann je nach Ausführung des Schwimmers (Titan, 1.4571) in einem weiten Dichte- und Druckbereich eingesetzt werden.

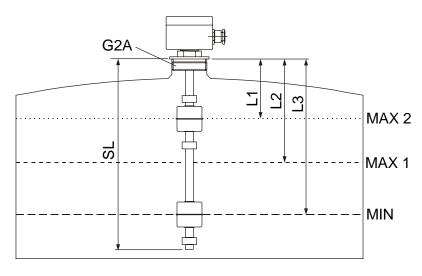
Standardmäßig sind die Schaltpunkte fest eingestellt (nach Kundenvorgabe). Optional können die Kontakte verstellbar ausgeführt werden.

Achtung: Ein starker Anteil von ferritischen Schwebeteilchen und Schlamm in der Nähe des als Low-Schalters eingesetzten Schwimmerschalters ist zu vermeiden.

1.1 Bestimmungsgemäßer Gebrauch

Der Schwimmerschalter Magnodul 719.0021 dient ausschließlich zum Erfassen von Füllstandgrenzwerten von Flüssigkeiten.

Die Verantwortung über die bestimmungsgemäße Ausführung gemäß Bestellerangaben übernimmt der Hersteller. Die Verantwortung über die bestimmungsgemäße Montage und Verwendung übernimmt der Besteller.


Wenn nicht anders vereinbart, ist der Schwimmerschalter ausgelegt auf statische Betriebsbedingungen im Rahmen der im Auftrag bestätigten Druck-/ Temperatur-Grenzwerte.

Im Falle zu erwartender Vibrationen, etwa durch Pumpen, Kompressoren, hat der Besteller für ausreichende Schwingungsdämpfung zu sorgen.

Der Besteller stellt sicher, dass exotherme Reaktionen oder spontane Gasphasenbildung des Mediums ausgeschlossen sind.

Achtung: Ist das Medium Wasser und es besteht die Gefahr der Vereisung, ist zwecks Vermeidung von Beschädigungen an Schwimmer das Wasser aus dem Behälter abzulassen oder eine Beheizung vorzusehen.

1.2 Einbauvorschläge

Abb. 1

MAX 2 Einbau von oben in einen Tank über ein Einschraubgewinde 2".

MAX 1 Bestückt mit 3 Kontakten und zwei Schwimmern zur Überwachung von MIN, MAX1 und MAX2.

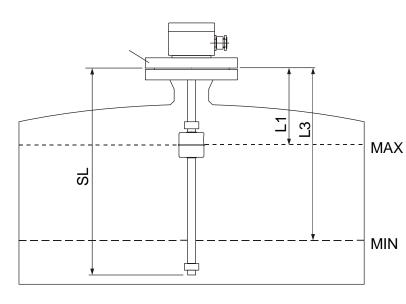
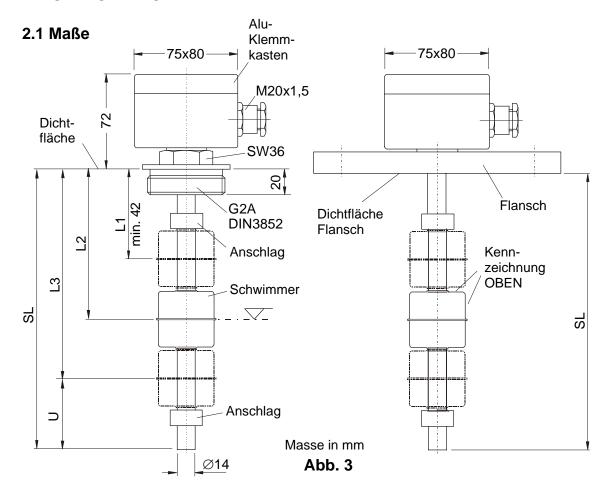


Abb. 2

MAX Einbau von oben in einen Tank über einen Flansch. Bestückt mit 2 Kontakten und einem Schwimmer zur Überwachung von MIN MIN und MAX.


1.3 CE-Kennzeichnung

Das Gerät entspricht den Anforderungen nach EG-Richtlinie 73/23/EG. Angewandte Normen: DIN EN 61010-1:2002

1.4 Qualität

Die Geräte werden im Rahmen eines eingeführten und qualifizierten QM-Systems nach DIN EN ISO 9001 gefertigt.

2. AUFBAU DER GERÄTE

Schwimmerform	Abmessung	U [mm]
Zylinder	43 x 43 x 15,5	50
Kugel	52 x 52 x 15,5	60
Zylinder	156 x 56 x 16	165

2.2 Anordnung Kontakte

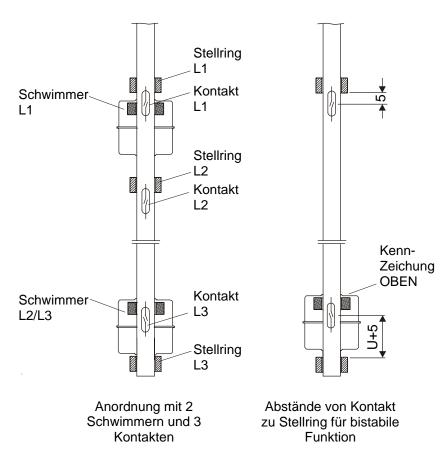


Abb. 4
Beispiel für
Schwimmer- und
Kontaktanordnung. Die Positionen von zugehörigem
Kontakt und Stellring sind bei bistabilem Verhalten
aufeinander abgeglichen.

3. INBETRIEBNAHME

Es wird empfohlen, beim Auspacken der Geräte alle Teile auf äußerliche Beschädigungen zu überprüfen. Die technischen Spezifikationen (Druck, Sensorlänge, Position der Schalter) sollten mit dem gelieferten Gerät übereinstimmen.

Eine Funktionsprüfung kann mit einem Durchgangsprüfer und durch Verschieben der Schwimmer durchgeführt werden.

Der elektrische Anschluss darf nur von autorisiertem Fachpersonal vorgenommen werden. Dabei sind die einschlägigen VDE-Vorschriften zu beachten.

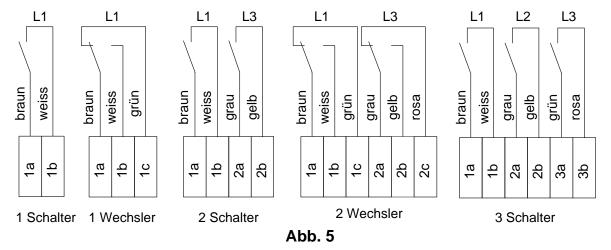
3.1 Mechanische Montage

Bei Ausführung mit Einschraubgewinde direkt in einen entsprechenden Gewindestutzen mit einer metallischen Dichtung einschrauben.

Für Stopfen nach DIN 910 ist das übliche Anzugsmoment zu verwenden.

Achtung, nicht das Klemmengehäuse zum Festziehen verwenden!

Bei Ausführung mit Flansch an den Gegenflansch des Behälters anflanschen. Der Besteller hat für die geeignete Auswahl der Dichtungsmaße- und Materialien zu sorgen. Das Anzugsdrehmoment der Schrauben entspricht den im Rohrleitungsbau üblichen Werten.


Die Position der Stellringe darf bei der Montage nicht verändert werden

Sollte dies doch notwendig sein, zuerst Markierungen für die Positionen anbringen. Nach der Montage die Stellringe wieder an den vorher markierten Positionen befestigen. Beim Aufschieben der Schwimmer diese mit der Markierung nach oben aufschieben. Sollte die Markierung nicht mehr sichtbar sein, kann mit einem magnetischen Werkzeug die Position des Magneten im Schwimmer festgestellt werden (siehe Abb. 4).

3.2 Elektrischer Anschluss

Kabel an den ensprechenden Klemmen auflegen. Die IP-Schutzart des Klemmengehäuses wird nur dann erreicht, wenn der Durchmesser des Kabelmantels zur Kabelverschraubung paßt.

3.2.1 Anschlussbild

Sind die Kontakte verstellbar ausgeführt, sind die Anschlussdrähte entsprechend kundenseitig zu kürzen und auf den Klemmen aufzulegen.

4. WARTUNG

Der Schwimmerschalter ist bei bestimmungsgemäßem Gebrauch wartungsfrei.

Sollte ein Defekt auftreten, empfehlen wir die Reparatur bei PHÖNIX-Messtechnik GmbH (Adresse siehe Fußzeile) oder vom Anwender mit Abnahme durch einen Sachverständigen vornehmen zu lassen.

Bei Ersatzteilbestellungen unbedingt genauen Typ, Serien-Nr. und Kommissions-Nr. des Herstellers angeben.

5. GARANTIE

Wir gewähren auf unsere Produkte eine Garantiezeit von 24 Monaten. Vorraussetzung ist die sachgemäße Behandlung entsprechend der Bedienungsanleitung. Bei Verschleiß- und Ersatzteilen beschränkt sich die Garantie auf Material - und Konstruktionsfehler.

6. Entsorgung

Der Kunde übernimmt die Pflicht, die gelieferte Ware nach Nutzungsbeendigung auf eigene Kosten nach den gesetzlichen Vorschriften ordnungsgemäß zu entsorgen.

7. INSTANDSETZUNG

Bei Austausch eines Schwimmers wird verfahren, wie unter 3.1 beschrieben.

8. STÖRUNGSBEISTAND

STÖRUNG	MÖGLICHE URSACHEN	ABHILFE
Schalter schaltet nicht	- Schwimmer festgeklemmt	Schwimmer freimachen, evtl. Einbausituation überprüfen
	- Dichte des Mediums hat sich geändert	Schwimmer mit der richtigen Dichteauslegung einsetzen
	- Schwimmer defekt	Austausch kundenseitig möglich
	- Schaltelement ist defekt	Austausch durch Hersteller
Bistabiler Schalter hat kein bistabiles Verhalten mehr	zugehöriger Stellring sitzt nicht mehr an der richtigen Position	Stellring entsprechend Abb. 4 befestigen

9. TECHNISCHE DATEN

9.1 Mechanische Daten

Genauigkeit		
Schaltpunkt	mm	<u>+</u> 5
Hysterese	mm	10
Temperatur		
- Medium	°C	-75 / +125
-Umgebung	°C	-60 / +90
Betriebsdruck	MPa/bar	0 - 6,4/0 - 64
Dichte	g/cm ³	> 0,45 / >0,8
Montageanschluss - Einschraubgewinde - Flansch		ab G2A ab G1/2A
Gewicht - Einschraubgewinde - Flansch	kg kg	ca. 0,9 + 0,007/cm ca. 0,5 + 0,007/cm + Flanschgewicht

9.2 Elektrische Daten

Schaltspannung		
Schaitspainlung	V	230 DC / 230 AC
Schaltstrom		
	Α	1
Schaltleistung		
9	W	30
	VA	30
Kontaktwiderstand	mΩ	150
Schaltzeit		
	ms	1
Abfallzeit		
	ms	2,0
Kabelverschraubung		M20 x 1,
Schutzart nach EN 60529		IP 65

8.3 Besondere Bedingungen

Besondere Bedingungen	Bei Längen über 3 m muss der Schwimmerschalter mit Abstütz- bzw. Abspannvorrichtungen gegen Verbiegen	
	gesichert werden	

Änderungen vorbehalten

10. NUMMERNSCHLÜSSEL

Kontakt								
	1.	2.	3.					Sensor-
7 1 9 . 0 0 2 1 -	Χ	X	X	X		X	x x - x x x x	länge SL
7 1 0 1 0 0 2 1				Ť				in mm
Sonder	9	9	9					
Schalter Öffner monostabil	Ν	N	N				F Fest	Schalt-
Schalter Öffner bistabil	0	0	0				V Verstellbar	punkte
Pt-100	Р	Р	Р				1 G1/2A (bei Flansch)	An-
Schalter Schliesser monostabil	R	R	R				2 G1 1/2A	schluss
Schalter Schliesser bistabil	S	S	S				3 G2A	30111033
Thermoschalter	Τ	Т	Т		4	4	1.4571	Werkstoff
Wechsler monostabil	V	V	V	S	3	Sta	ndard	Aus-
Wechsler bistabil	W	W	W		-			führung

11. ERSATZTEILE

11.1 Schwimmer

Form	Dichte [g/cm ³]	Druck [MPa]	Werkstoff	Abmessung HxDxd [mm]	Bestell-Nr.
Kugel	≥ 0,60	2,5	1.4571	52x52x15,5	SK0521505354
Kugel	≥ 0,80	4,0	1.4571	52x52x15,5	SK0521505254
Zylinder	≥ 0,70	1,6	1.4571	43x43x15,5	SZ0431504444
Zylinder	≥ 0,45 0,55	2,5 6,4	3.7025 3.7035	156x56x16	SZ1561605664

Schwimmer für geringere Dichten, höheren Drücken und Trennschicht auf Anfrage

11.2 Stellring

Werkstoff	Abmessung HxDxd [mm]	Bestell-Nr.
1.4571	12x25x14	D007051140

Content	page
1. FIELD OF APPLICATION	12
1.1 Use as agreed	12
1.2 Installation hints	12
1.3 CE-marking	13
1.4 Quality	13
2. STRUCTURE OF THE FLOAT SWITCHES	13
2.1 Measures	13
2.2 Arrangement of switches	14
3. PUTTING INTO OPERATION	14
3.1 Mechanical mounting	14
3.2 Electrical Connection 3.2.1 Wiring diagrams	15 15
4. MAINTENANCE	15
5. GUARANTEE	15
6. DISPOSAL	16
7. REPAIR	16
8. TROUBLE SHOOTING	16
9. TECHNICAL DATA	16
9.1 Mechanical Data	16
9.2 Electrical Data	17
9.3 Special conditions	17
10. ORDERING NO KEY CODE	17
11. SPARE PARTS	18
11.1 Floats	18
11.2 Stopper	18

1. FIELD OF APPLICATION

The float switch Magnodul 719.0021 is for signaling liquid level limits and is of top mounted design. Depending on the float's properties (Titanium, 1.4571) it may be used for a broad range of densities and pressure ranges.

As standard the switch points are fixed (acc. to customer's request). Optional the switch points can be adjustable.

Attention: Near by the flow switch, operating as low switch, a high share of ferritic suspension is to be avoid.

1.1 Use as agreed

The float switches are exclusively built for monitoring a level limit of liquids. The manufacturer takes on the responsibility about the execution as agreed in accordance with customer details. The customer takes on the responsibility about the assembly as agreed and use.

If not agreed differently, the float switches are designed for static operating conditions in the context of the pressure and temperature limiting values confirmed in the order.

In the case of vibrations e. g. by pumps, compressors, to be expected the customer has to provide a sufficient vibration recession.

The customer makes sure that exothermic reactions or spontaneous gaseous phase formation of the medium is excluded.

Attention: If the medium is water and the danger of icing-up is given, the water for the purpose of avoidance to float of damages, is to drain from tank or providing a heating.

1.2 Installation hints

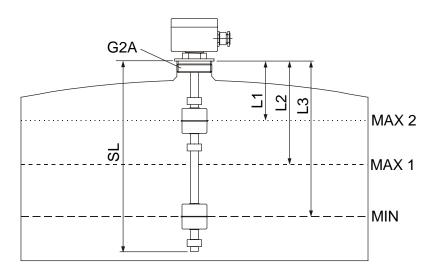


Fig. 1

Top mounted into a tank with a 2" threaded connection. Equipped with 3 contacts and two floats for signalling 3 levels MIN, MAX1 and MAX2.

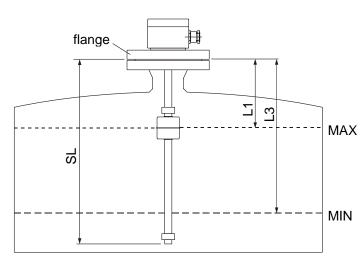
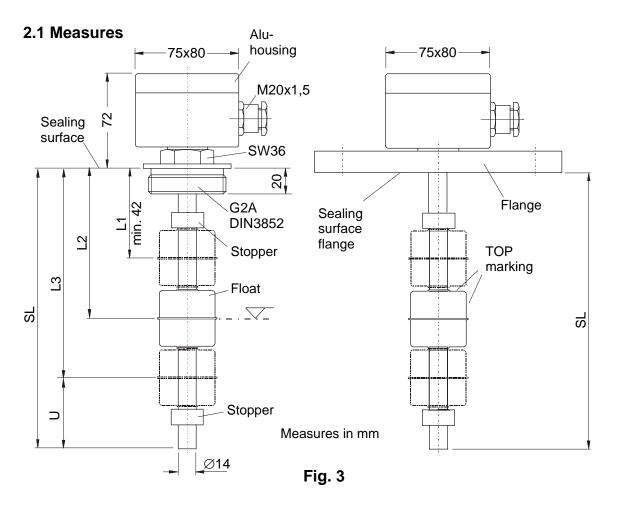


Fig. 2

Top mounted into a tank with a flange. Equipped with 2 contacts and one float for signalling MIN and MAX.


1.3 CE-marking

This devices confirms with the EC-directive 73/23/EG. Applied harmonized standard: DIN EN 61010-1:2002

1.4 Quality

These float switches are produced under a Quality Management System in accordance with DIN EN ISO 9001.


2. STRUCTURE OF THE FLOAT SWITCHES

Float shape	Dimension	U [mm]
Cylinder	43 x 43 x 15,5	50
Sphere	52 x 52 x 15,5	60
Cylinder	156 x 56 x 16	165

2.2 Arrangement of switches

3. PUTTING INTO OPERATION

We recommend to check all devices during unpacking for damages. The technical specifications (pressure, sensor length, position of switches) shall cope with the device delivered.

You may perform a functional test by using a continuity checker while moving the float.

Electrical wiring shall only be made by authorized professionals. Doing this all local and general regulations have to be regarded.

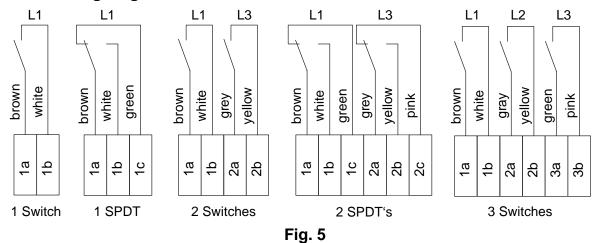
3.1 Mechanical mounting

If the connection is a threaded, screwing in with a metallic sealing is preferred. The torque to be applied corresponds with the standard DIN 910.

Attention, do not use the terminal box for fastening!

If it is a flanged version, tighten it to the counter flange.

Please use always the appropriate seals regarding size and material. The torque to be applied corresponds with the standards used in pipe works.


While mounting, avoid to move any stopper off it's position!

If removing of stoppers would be necessary, first mark the original position. So when mounting the stoppers again, you'll find easily the former position. The floats always have to be slipped on showing the marking on top. In the case the marking could not be seen any more, you may check for the magnets position with a magnetic tool (see Fig. 4).

3.2 Electrical Connection

Connect the cable to the corresponding screw terminals. Only by using the proper cable diameter for the cable gland, you will achieve an optimum ingress protection!

3.2.1 Wiring diagrams

In the case of adjustable contacts the wires are to be cut by customer and connected to the corresponding terminals.

4. MAINTENANCE

Using the float switch in an appropriate manner, it will be maintenance-free.

In the case of a failure we recommend the float switches to be sent for repair to PHÖNIX-Messtechnik GmbH (address see bottom of any page). Otherwise only authorized works specialists may do this.

When ordering spare parts please use exact Type, Serial-No. and Commissions-No. which you'll find on the type plate.

5. GUARANTEE

We grant a guarantee period of 24 months, under the condition this device has been handled and operated according to this manual. For wear and spare parts the guarantee is restricted to failures in material or construction.

6. Disposal

The customer/enduser is obliged to take care for the disposal within the legal regulations.

7. REPAIR

For exchanging a float see chapter 3.1.

8. TROUBLE SHOOTING

Failure	Reason	Remedy
No switch action	- Float stuck	Unblock the float, check for correct mounting
	- Density of liquid changed	Use float with lower density
	- Float defect	Exchange float
	- Switch defect	Repair at PHÖNIX
No bistable action	Position of stopper wrong	Mount stopper like shown in Fig. 4

9. TECHNICAL DATA

9.1 Mechanical Data

Accuracy Switch point Hysteresis	mm mm	<u>+</u> 5 10
Temperature - Medium - Ambient	°C °C	-75 / +125 -60 / +90
Pressure Density	MPa/bar g/cm ³	0 - 6,4/0 - 64 > 0,45 / >0,8
ConnectionThreadedFlanged		From G2A G1/2A
Weight - Threaded - Flanged	kg kg	ca. 0,9 + 0,007/cm ca. 0,5 + 0,007/cm + weight of flange

9.2 Electrical Data

- Switch Voltage	V	230 DC / 230 AC		
- Switch current				
	Α	1		
- Rupturing capacity				
Jan Sanjana	W	30		
	VA	30		
Contact resistance	mΩ	150		
- Switch time				
	ms	1		
- Fall time				
	ms	2,0		
Cable gland		M20 x 1,5		
Ingress prot. EN 60529		IP 65		

9.3 Special conditions

Special conditions		With measuring lengths of more than 3 m the float switch has to be fixed by any means to protect against		
		bending or moving		

Subject to alterations

10. ORDERING NO KEY CODE

Contact									
1. 2. 3.								Sensor	
7 1 9 0 0 2 1 -	X	X	X	X)	Χ	Χ	x - x x x x	length SL
	Ÿ	$\dot{\uparrow}$	<u> </u>	Ť	'	Ù	Ť		in mm
Special	9	9	9						
Switch NC monostable	N	Ν	Ν					F Fixed	Switch
Switch NC bistable	0	0	0					V adjustably	points
Pt-100	Р	Р	Р				1	G1/2A (if flange)	
Switch NO monostable	R	R	R				2	G1 1/2A	Connection
Switch NO bistable	S	S	S				3	G2A	
Thermo switch	Т	Т	Т		4	1	1.4	571	Material
SPDT monostable	V	V	٧	S	S Standard			Version	
SPDT bistable	W	W	W						VEISIOIT

11. SPARE PARTS

11.1 Floats

Shape	Density [g/cm ³]	Pressure [MPa]	Material	Dimensions HxDxd [mm]	Ordering-No.
Sphere	≥ 0,60	2,5	1.4571	52x52x15,5	SK0521505354
Sphere	≥ 0,80	4,0	1.4571	52x52x15,5	SK0521505254
Cylinder	≥ 0,70	1,6	1.4571	43x43x15,5	SZ0431504444
Cylinder	≥ 0,45 0,55	2,5 6,4	3.7025 3.7035	156x56x16	SZ1561605664

Floats for lower densities or higher pressures and interface on request

11.2 Stopper

Material	Dimensions HxDxd [mm]	Ordering-No.
1.4571	12x25x14	D007051140